
3
Markov chains and hidden Markov

models

Having introduced some methods for pairwise alignment in Chapter 2, the em-
phasis will switch in this chapter to questions about a single sequence. The main
aim of the chapter is to develop the theory for a very general form of proba-
bilistic model for sequences of symbols, called a hidden Markov model (abbrevi-
ated HMM). The types of question we can use HMMs and their simpler cousins,
Markov models, to consider are: ‘Does this sequence belong to a particular fam-
ily?’ or ‘Assuming the sequence does come from some family, what can we say
about its internal structure?’ An example of the second type of problem would be
to try to identify alpha helix or beta sheet regions in a protein sequence.

As well as giving examples from the biological sequence world, we also give
the mathematics and algorithms for many of the operations on HMMs in a more
general form. These methods, or close analogues of them, are applied in many
other sections of the book. This chapter therefore contains a fairly large amount
of mathematically technical material. We have tried to organise it so that the
first half, approximately, leads the reader through the essential algorithms using
a single biological example. In the later sections we introduce a variety of other
examples to illustrate more complex extensions of the basic approaches.

In the next chapter, we will see how HMMs can also be applied to the types
of alignment problem discussed in Chapter 2, in Chapter 5 they are applied to
searching databases for protein families, and in Chapter 6 to alignment of several
sequences simultaneously. In fact, the search and alignment applications con-
stitute probably the best-known use of HMMs for biological sequence analysis.
However, we present HMM theory here in a less specialised context in order to
emphasise its much broader applicability, which goes far beyond that of sequence
alignment.

The overwhelming majority of papers on HMMs belong to the speech recog-
nition literature, where they were applied first in the early 1970s. One of the
best general introductions to the subject is the review by Rabiner [1989], which
also covers the history of the topic. Although there will be quite a bit of over-
lap between that and the present chapter, there will be important differences in
focus.

47

48 3 Markov chains and hidden Markov models

Before going on to introduce HMMs for biological sequence analysis, it is
perhaps interesting to look briefly at how they are used for speech recognitionRabinerJuang93

added. [Rabiner & Juang 1993]. After recording, a speech signal is divided into pieces
(called frames) of 10–20 milliseconds. After some preprocessing each frame is
assigned to one out of a large number of predefined categories by a process known
as vector quantisation. Typically there are 256 such categories. The speech signal
is then represented as a long sequence of category labels and from that the speech
recogniser has to find out what sequence of phonemes (or words) was spoken.
The problems are that there are variations in the actual sound uttered, and there
are also variations in the time taken to say the various parts of the word.

Many problems in biological sequence analysis have the same structure: ba-
sed on a sequence of symbols from some alphabet, find out what the sequence
represents. For proteins the sequences consist of symbols from the alphabet of 20
amino acids, and we typically want to know what protein family a given sequence
belongs to. Here the primary sequence of amino acids is analogous to the speech
signal and the protein family to the spoken word it represents. The time-variation
of the speech signal corresponds to having insertions and deletions in the protein
sequences.

Let us turn to a simpler example, which we will use to introduce first standard
Markov models, of the non-hidden variety, then a simple hidden Markov model.

Example: CpG islands

In the human genome wherever the dinucleotide CG occurs (frequently writtenAK: A, C, G and T in
tt font. CpG to distinguish it from the C-G base pair across the two strands) the C nu-

cleotide (cytosine) is typically chemically modified by methylation. There is a
relatively high chance of this methyl-C mutating into a T, with the consequence
that in general CpG dinucleotides are rarer in the genome than would be expected
from the independent probabilities of C and G. For biologically important rea-
sons the methylation process is suppressed in short stretches of the genome, such
as around the promoters or ‘start’ regions of many genes. In these regions we
see many more CpG dinucleotides than elsewhere, and in fact more C and G nu-
cleotides in general. Such regions are called CpG islands [Bird 1987]. They are
typically a few hundred to a few thousand bases long.

We will consider two questions: Given a short stretch of genomic sequence,
how would we decide if it comes from a CpG island or not? Second, given a long
piece of sequence, how would we find the CpG islands in it, if there are any? Let
us start with the first question.

3.1 Markov chains

What sort of probabilistic model might we use for CpG island regions? We
know that dinucleotides are important. We therefore want a model that generates

3.1 Markov chains 49

sequences in which the probability of a symbol depends on the previous symbol.
The simplest such model is a classical Markov chain. We like to show a Markov
chain graphically as a collection of ‘states’, each of which corresponds to a par-
ticular residue, with arrows between the states. A Markov chain for DNA can be
drawn like this:

TA

GC

where we see a state for each of the four letters A, C, G, and T in the DNA alpha- AK: A, C, G and T in
tt font.bet. A probability parameter is associated with each arrow in the figure, which

determines the probability of a certain residue following another residue, or one
state following another state. These probability parameters are called the transi-
tion probabilities, which we will write ast :

ast = P(xi = t |xi−1 = s). (3.1)

For any probabilistic model of sequences we can write the probability of the
sequence as

P(x) = P(xL , xL−1, . . . , x1)

= P(xL |xL−1, . . . , x1)P(xL−1|xL−2, . . . , x1) · · · P(x1)

by applying P(X ,Y) = P(X |Y)P(Y) many times. The key property of a Markov
chain is that the probability of each symbol xi depends only on the value of the
preceding symbol xi−1, not on the entire previous sequence, i.e. P(xi |xi−1, . . . , x1)
= P(xi |xi−1) = axi−1xi . The previous equation therefore becomes

P(x) = P(xL |xL−1)P(xL−1|xL−2) · · · P(x2|x1)P(x1)

= P(x1)
L∏

i=2

axi−1xi . (3.2)

Although we have derived this equation in the context of CpG islands in DNA
sequences, it is in fact the general equation for the probability of a specific se-
quence from any Markov chain. There is a large literature on Markov chains, see
for example Cox & Miller [1965].

50 3 Markov chains and hidden Markov models

TA

GC

B E

Figure 3.1 Begin and end states can be added to a Markov chain (grey
model) for modelling both ends of a sequence.

Exercise

3.1 The sum of the probabilities of all possible sequences of length L can be
written (using (3.2))

∑

{x}
P(x) =

∑

x1

∑

x2

. . .
∑

xL

P(x1)
L∏

i=2

axi−1xi .

Show that this is equal to 1.

Modelling the beginning and end of sequences

Notice that as well as specifying the transition probabilities we must also give the
probability P(x1) of starting in a particular state. To avoid the inhomogeneity of
(3.2) introduced by the starting probabilities, it is possible to add an extra begin
state to the model. At the same time we add a letter to the alphabet, which we
will call B. By defining x0 = B the beginning of a sequence is also included in
(3.2), so for instance the probability of the first letter in the sequence is

P(x1 = s) = aBs .

Similarly we can add a symbol E to the end of a sequence to ensure the end is
modelled. Then the probability of ending with residue t is

P(E |xL = t) = atE .

To match the new symbols, we add begin and end states to the DNA model (see
Figure 3.1). In fact, we need not explicitly add any letters to the alphabet, but
instead can treat the two new states as ‘silent’ states that just serve as start and
end points.

Traditionally the end of a sequence is not modelled in Markov chains; it is
assumed that the sequence can end anywhere. The effect of adding an explicit

3.1 Markov chains 51

end state is to model a distribution of lengths of the sequence. This way the model
defines a probability distribution over all possible sequences (of any length). The
distribution over lengths decays exponentially; see the exercise below.

Exercises

3.2 Assume that the model has an end state, and that the transition from any
state to the end state has probability τ . Show that the sum of the proba-
bilities (3.2) over all sequences of length L (and properly terminating by
making a transition to the end state) is τ (1− τ)L−1.

3.3 Show that the sum of the probability over all possible sequences of any
length is 1. This proves that the Markov chain really describes a proper
probability distribution over the whole space of sequences. (Hint: Use
the result that, for 0 < x < 1,

∑∞
i=0 xi = 1/(1− x).)

Using Markov chains for discrimination

A primary use for equation (3.2) is to calculate the values for a likelihood ratio
test. We illustrate this here using real data for the CpG island example. From a set
of human DNA sequences we extracted a total of 48 putative CpG islands and de-
rived two Markov chain models, one for the regions labelled as CpG islands (the
‘+’ model) and the other from the remainder of the sequence (the ‘−’ model).
The transition probabilities for each model were set using the equation

a+
st = c+

st∑
t ′ c

+
st ′

, (3.3)

and its analogue for a−
st , where c+

st is the number of times letter t followed letter
s in the labelled regions. These are the maximum likelihood (ML) estimators for
the transition probabilities, as described in Chapter 1.

(In this case there were almost 60 000 nucleotides, and ML estimators are ade-
quate. If the number of counts of each type had been small, then a Bayesian es-
timation process would have been more appropriate, as discussed in Chapter 11
and below for HMMs.) The resulting tables are ‘for below HMMs’

changed to ‘below for
HMMs’.+ A C G T

A 0.180 0.274 0.426 0.120
C 0.171 0.368 0.274 0.188
G 0.161 0.339 0.375 0.125
T 0.079 0.355 0.384 0.182

− A C G T

A 0.300 0.205 0.285 0.210
C 0.322 0.298 0.078 0.302
G 0.248 0.246 0.298 0.208
T 0.177 0.239 0.292 0.292

where the first row in each case contains the frequencies with which an A is
followed by each of the four bases, and so on for the other rows, so each row

52 3 Markov chains and hidden Markov models

sums to one. These numbers are not the same; for example, G following A is much
more common than T following A. Notice also that the tables are asymmetric. In
both tables the probability for G following C is lower than that for C following G,
although the effect is stronger in the ‘−’ table, as expected.

To use these models for discrimination, we calculate the log-odds ratio

S(x) = log
P(x |model +)
P(x |model −)

=
L∑

i=1

log
a+

xi−1xi

a−
xi−1xi

=
L∑

i=1

βxi−1xi

where x is the sequence and βxi−1xi are the log likelihood ratios of corresponding
transition probabilities. A table for β is given below in bits:1

β A C G T

A −0.740 0.419 0.580 −0.803
C −0.913 0.302 1.812 −0.685
G −0.624 0.461 0.331 −0.730
T −1.169 0.573 0.393 −0.679

Figure 3.2 shows the distribution of scores, S(x), normalised by dividing by
their length, i.e. as an average number of bits per molecule. If we had not nor-
malised by length, the distribution would have been much more spread out.

We see a reasonable discrimination between regions labelled CpG island and
other regions. The discrimination is not very much influenced by the length nor-
malisation. If we wanted to pursue this further and investigate the cases of mis-
classification, it is worth remembering that the error could either be due to an
inadequate or incorrectly parameterised model, or to mislabelling of the training
data.

3.2 Hidden Markov models

There are a number of extensions to classical Markov chains, which we will come
back to later in the chapter. Here, however, we will proceed immediately to hid-
den Markov models. We will motivate this by turning to the second of the two
questions posed initially for CpG islands: How do we find them in a long unanno-
tated sequence? The Markov chain models that we have just built could be used
for this purpose, by calculating the log-odds score for a window of, say, 100 nu-
cleotides around every nucleotide in the sequence and plotting it. We would then

1 Base 2 logarithms were used, in which case the unit is called a bit. See Chapter 11.

3.2 Hidden Markov models 53

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
Bits

0

5

10

Figure 3.2 The histogram of the length-normalised scores for all the se-
quences. CpG islands are shown with dark grey and non-CpG with light
grey.

A+
C+ G+

T+

A− C− G−
T−

Figure 3.3 An HMM for CpG islands. In addition to the transitions shown,
there is also a complete set of transitions within each set, as in the earlier
simple Markov chains.

expect CpG islands to stand out with positive values. However, this is somewhat
unsatisfactory if we believe that in fact CpG islands have sharp boundaries, and
are of variable length. Why use a window size of 100? A more satisfactory ap-
proach is to build a single model for the entire sequence that incorporates both
Markov chains.

To simulate in one model the ‘islands’ in a ‘sea’ of non-island genomic se-
quence, we want to have both the Markov chains of the last section present in the
same model, with a small probability of switching from one chain to the other
at each transition point. However, this introduces the complication that we now
have two states corresponding to each nucleotide symbol. We resolve this by re-
labelling the states. We now have A+, C+, G+ and T+ which emit A, C, G and T
respectively in CpG island regions, and A−, C−, G− and T− correspondingly in
non-island regions; see Figure 3.3.

54 3 Markov chains and hidden Markov models

The transition probabilities in this model are set so that within each group they
are close to the transition probabilities of the original component model, but there
is also a small but finite chance of switching into the other component. Overall
there is more chance of switching from ‘+’ to ‘−’ than vice versa, so if left to
run free, the model will spend more of its time in the ‘−’ non-island states than
in the island states.

The relabelling is the critical step. The essential difference between a Markov
chain and a hidden Markov model is that for a hidden Markov model there is not
a one-to-one correspondence between the states and the symbols. It is no longer
possible to tell what state the model was in when xi was generated just by looking
at xi . In our example there is no way to tell by looking at a single symbol C in
isolation whether it was emitted by state C+ or state C−

Formal definition of an HMM

Let us formalise the notation for hidden Markov models, and derive the probabil-
ity of a particular sequence of states and symbols. We now need to distinguish the
sequence of states from the sequence of symbols. Let us call the state sequence
the path, π . The path itself follows a simple Markov chain, so the probability of
a state depends only on the previous state. The i th state in the path is called πi .
The chain is characterised by parameters

akl = P(πi = l|πi−1 = k). (3.4)

To model the beginning of the process we introduce a begin state, as was intro-
duced earlier to model the beginning of sequences in Markov chains (Figure 3.1).
The transition probability a0k from this begin state to state k can be thought of as
the probability of starting in state k. It is also possible to model ends as before
by always ending a state sequence with a transition into an end state. For conve-
nience we label both begin and end states as 0 (there is no conflict here because
you can only transit out of the begin state, and only into the end state, so variables
are not used more than once).

Because we have decoupled the symbols b from the states k, we must introduce
a new set of parameters for the model, ek(b). For our CpG model each state is
associated with a single symbol, but this is not a requirement; in general a state
can produce a symbol from a distribution over all possible symbols. We therefore
define

ek(b) = P(xi = b|πi = k), (3.5)

the probability that symbol b is seen when in state k. These are known as the
emission probabilities.

For our CpG island model the emission probabilities are all 0 or 1. To illustrate
emission probabilities we reintroduce here the casino example from Chapter 1.

3.2 Hidden Markov models 55

Example: The occasionally dishonest casino, part 1

Let us consider an example from Chapter 1. In a casino they use a fair die most of
the time, but occasionally they switch to a loaded die. The loaded die has prob-
ability 0.5 of a six and probability 0.1 for the numbers one to five. Assume that
the casino switches from a fair to a loaded die with probability 0.05 before each
roll, and that the probability of switching back is 0.1. Then the switch between
dice is a Markov process. In each state of the Markov process the outcomes of a
roll have different probabilities, and thus the whole processs is an example of a
hidden Markov model. We can draw it like this:

Fair

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
6: 1/6

Loaded

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6: 1/2

0.95 0.9

0.05

0.1

where the emission probabilities e() are shown in the state boxes.

What is hidden in the above model? If you can just see a sequence of rolls (the
sequence of observations) you do not know which rolls used a loaded die and
which used a fair one, because that is kept secret by the casino; that is, the state
sequence is hidden. In a Markov chain you always know exactly in which state a
given observation belongs. Obviously the casino wouldn’t tell you that they use
loaded dice and what the various probabilities are. Yet for this more complicated
situation, which we will return to later, it is possible to estimate the probabilities
in the above HMM (once you have a suspicion that they use two different dice).

The reason for the name emission probabilities is that it is often convenient
to think of HMMs as generative models, that generate or emit sequences. For
instance we can generate random sequences of rolls from the model of the fair/-
loaded dice above by simulating the successive choices of die, then rolls of the
chosen die. More generally a sequence can be generated from an HMM as fol-
lows: First a state π1 is chosen according to the probabilities a0i . In that state an
observation is emitted according to the distribution eπ1 for that state. Then a new
state π2 is chosen according to the transition probabilities aπ1i and so forth. This
way a sequence of random, artificial observations are generated. Therefore, we
will sometimes say things like P(x) is the probability that x was generated by
the model.

It is now easy to write down the joint probability of an observed sequence x
and a state sequence π :

P(x ,π) = a0π1

L∏

i=1

eπi (xi)aπi πi+1 , (3.6)

56 3 Markov chains and hidden Markov models

where we require πL+1 = 0. For example, the probability of sequence CGCG being
emitted by the state sequence (C+,G−,C−,G+) in our model is

a0,C+ × 1 × aC+,G− × 1 × aG−,C− × 1 × aC−,G+ × 1 × aG+,0.

Equation (3.6) is the HMM analogue of equation (3.2). However, it is not so
useful in practice because in general we do not know the path. In the following
sections we describe how to estimate the path, either by finding the most likely
one, or alternatively by using an a posteriori distribution over states. Then we go
on to show how to estimate the parameters for an HMM.

Most probable state path: the Viterbi algorithm

Although it is no longer possible to tell what state the system is in by looking at
the corresponding symbol, it is often the sequence of underlying states that we are
interested in. To find out what the observation sequence ‘means’ by considering
the underlying states is called decoding in the jargon of speech recognition. There
are several approaches to decoding. Here we will describe the most common
one, called the Viterbi algorithm. It is a dynamic programming algorithm closely
related to the ones covered in Chapter 2.

In general there may now be many state sequences that could give rise to
any particular sequence of symbols. For example, in our CpG model the state
sequences (C+,G+,C+,G+), (C−,G−,C−,G−) and (C+,G−,C+,G−) would all
generate the symbol sequence CGCG. However, they do so with very different
probabilities. The third is the product of multiple small probabilities of switching
back and forth between the components, and hence is much smaller than the first
two. The second is itself significantly smaller than the first because it contains
two C to G transitions which are significantly less probable in the ‘−’ component
than in the ‘+’ component. Of these three choices, therefore, it is most likely that
the sequence CGCG came from a set of ‘+’ states.

A predicted path through the HMM will tell us which part of the sequence
is predicted as a CpG island, because we assumed above that each state was
assigned to model either CpG islands or other regions. If we are to choose just
one path for our prediction, perhaps the one with the highest probability should
be chosen,

π∗ = argmax
π

P(x ,π). (3.7)

The most probable path π∗ can be found recursively. Suppose the probability
vk(i) of the most probable path ending in state k with observation i is known for
all the states k. Then these probabilities can be calculated for observation xi+1 as

vl(i +1) = el(xi+1)max
k

(vk(i)akl). (3.8)

3.2 Hidden Markov models 57

v C G C G

B 1 0 0 0 0
A+ 0 0 0 0 0
C+ 0 0.13 0 0.012 0
G+ 0 0 0.034 0 0.0032
T+ 0 0 0 0 0
A− 0 0 0 0 0
C− 0 0.13 0 0.0026 0
G− 0 0 0.010 0 0.00021
T− 0 0 0 0 0

Figure 3.4 For the model of CpG islands shown in Figure 3.3 and the se-
quence CGCG, this is the resulting table of v. The most probable path is
shown with bold face.

All sequences have to start in state 0 (the begin state), so the initial condition is
that v0(0) = 1. By keeping pointers backwards, the actual state sequence can be
found by backtracking. The full algorithm is:

Algorithm: Viterbi

Initialisation (i = 0): v0(0) = 1, vk(0) = 0 for k > 0.

Recursion (i = 1 . . . L): vl(i) = el(xi)maxk(vk(i −1)akl);
ptri (l) = argmaxk(vk(i −1)akl).

Termination: P(x ,π∗) = maxk(vk(L)ak0);
π∗

L = argmaxk(vk(L)ak0).

Traceback (i = L . . .1): π∗
i−1 = ptri (π

∗
i). ✁

Note that an end state is assumed, which is the reason for ak0 in the termination
step. If ends are not modelled, this a will disappear.

There are some implementational issues both for the Viterbi algorithm and the
algorithms described later. The most severe practical problem is that multiply-
ing many probabilities always yields very small numbers that will give underflow
errors on any computer. For this reason the Viterbi algorithm should always be
done in log space, i.e. calculating log(vl(i)), which will make the products be-
come sums and the numbers stay reasonable. This is discussed in Section 3.6.

Figure 3.4 shows the full table of values of v for the sequence CGCG and the
CpG island model. When we apply the same algorithm to a longer sequence the
derived optimal path π∗ will switch between the ‘+’ and the ‘−’ components of
the model, and thereby give the precise boundaries of the predicted CpG island
regions.

Example: The occasionally dishonest casino, part 2

For a sequence of dice rolls we can now find the most probable path through
the model shown on p. 55. A total of 300 random rolls were generated from the Example reference by

page number

58 3 Markov chains and hidden Markov models

Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFLLLLLLLLLLLLLLL
Viterbi FFLLLLLLLLLLLL

Rolls 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF

Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterbi FFFL

Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFF
Viterbi LLLLLLLLLLLLFF

Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

Figure 3.5 The numbers show 300 rolls of a die as described in the exam-
ple. Below is shown which die was actually used for that roll (F for fair and
L for loaded). Under that the prediction by the Viterbi algorithm is shown.

model as described earlier. Each roll was generated either with the fair die (F)
or the loaded one (L), as shown below the outcome of the roll in Figure 3.5.
The Viterbi algorithm was used to predict the state sequence, i.e. which die was
used for each of the rolls. Generally, as you can see, the Viterbi algorithm has
recovered the state sequence fairly well.

Exerciseπ moved to below
argmax. 3.4 Show that π∗ = argmax

π
P(π |x) is equivalent to (3.7).

The forward algorithm

For Markov chains we calculated the probability of a sequence, P(x), with equa-
tion (3.2). The resulting values were used to distinguish between CpG islands
and other DNA for instance. We want to be able to calculate this probability for
an HMM as well. Because many different state paths can give rise to the same
sequence x , we must add the probabilities for all possible paths to obtain the full
probability of x ,

P(x) =
∑

π

P(x ,π). (3.9)

The number of possible paths π increases exponentially with the length of the
sequence, so brute force evaluation of (3.9) by enumerating all paths is not prac-
tical. One approach is to use equation (3.6) evaluated at the most probable path
π∗ obtained in the last section as an approximation to P(x). This implicitly as-
sumes that the only path with significant probability is π∗, a somewhat startling

3.2 Hidden Markov models 59

assumption which however in many cases is surprisingly good. In fact the ap-
proximation is unnecessary, because the full probability can itself be calculated
by a similar dynamic programming procedure to the Viterbi algorithm, replacing
the maximisation steps with sums. This is called the forward algorithm.

The quantity corresponding to the Viterbi variable vk(i) in the forward algo-
rithm is

fk(i) = P(x1 . . . xi ,πi = k), (3.10)

which is the probability of the observed sequence up to and including xi , requir-
ing that πi = k. The recursion equation is

fl(i +1) = el(xi+1)
∑

k

fk(i)akl . (3.11)

The full algorithm is:

Algorithm: Forward algorithm

Initialisation (i = 0): f0(0) = 1, fk(0) = 0 for k > 0.

Recursion (i = 1 . . . L): fl(i) = el(xi)
∑

k

fk(i −1)akl .

Termination: P(x) =
∑

k

fk(L)ak0. ✁

Like the Viterbi algorithm, the forward algorithm (and the backward algorithm
in the next section) can give underflow errors when implemented on a computer.
Again this can be solved by working in log space, although not as elegantly as
for Viterbi. Alternatively a scaling method can be used. Both approaches are de-
scribed in Section 3.6.

As well as their use in the forward algorithm, the quantities fk(i) have a num-
ber of other uses, including those described in the next two sections.

The backward algorithm and posterior state probabilities

The Viterbi algorithm finds the most probable path through the model, but as
we remarked at the time, this may not always be the most appropriate basis for
further inference about the sequence. We might for instance want to know what
the most probable state is for an observation xi . More generally, we may want the
probability that observation xi came from state k given the observed sequence,
i.e. P(πi = k|x). This is the posterior probability of state k at time i when the
emitted sequence is known.

Our approach to the posterior probability is a little indirect. We first calculate
the probability of producing the entire observed sequence with the i th symbol

60 3 Markov chains and hidden Markov models

being produced by state k:

P(x ,πi = k) = P(x1 . . . xi ,πi = k)P(xi+1 . . . xL |x1 . . . xi ,πi = k)

= P(x1 . . . xi ,πi = k)P(xi+1 . . . xL |πi = k), (3.12)

the second row following because everything after k only depends on the state at
k. The first term in this is recognised as fk(i) from (3.10) that was calculated by
the forward algorithm of the previous section. The second term is called bk(i),

bk(i) = P(xi+1 . . . xL |πi = k). (3.13)

It is analogous to the forward variable, but instead obtained by a backward recur-
sion starting at the end of the sequence:

Algorithm: Backward algorithm

Initialisation (i = L): bk(L) = ak0 for all k.

Recursion (i = L −1, . . . ,1): bk(i) =
∑

l

aklel(xi+1)bl(i +1).

Termination: P(x) =
∑

l

a0l el(x1)bl(1). ✁

The termination step is rarely needed, because P(x) is usually found by the
forward algorithm, and it is just shown for completeness.

Equation (3.12) can now be written as P(x ,πi = k) = fk(i)bk(i), and from it
we obtain the required posterior probabilities by straightforward conditioning,

P(πi = k|x) = fk(i)bk(i)
P(x)

, (3.14)

where P(x) is the result of the forward (or backward) calculation.

Example: The occasionally dishonest casino, part 3

In Figure 3.6 the posterior probability for the die being fair is shown for the
sequence of rolls shown in Figure 3.5. Notice that the posterior probability does
not reflect which die was actually used in some places. This is to be expected,
simply because a misleading sequence of rolls can occur at random.

Posterior decoding

A major use of the P(πi = k|x) is for two alternative forms of decoding in ad-
dition to the Viterbi decoding we introduced in the previous section. These are
particularly useful when many different paths have almost the same probability
as the most probable one, because then it is not well justified to consider only the
most probable path.

3.2 Hidden Markov models 61

0 50 100 150 200 250 300

P
(f

ai
r)

Figure 3.6 The posterior probability of being in the state corresponding to
the fair die in the casino example. The x axis shows the number of the roll.
The shaded areas show when the roll was generated by the loaded die.

The first approach is to define a state sequence π̂i that can be used in place of
π∗

i ,

π̂i = argmax
k

P(πi = k|x). (3.15)

As suggested by its definition, this state sequence may be more appropriate when
we are interested in the state assignment at a particular point i , rather than the
complete path. In fact, the state sequence defined by π̂i may not be particularly
likely as a path through the entire model; it may even not be a legitimate path at
all if some transitions are not permitted, which is normally the case.

The second, and perhaps more important, new decoding approach arises when
it is not the state sequence itself which is of interest, but some other property
derived from it. Assume we have a function g(k) defined on the states. The natural
value to look at then is

G(i |x) =
∑

k

P(πi = k|x)g(k). (3.16)

An important special case of this is where g(k) takes the value 1 for a subset
of the states and 0 for the rest. In this case, G(i |x) is the posterior probability
of the symbol i coming from a state in the specified set. For example, with our
CpG island model, what really concerns us is whether a base is part of an island
or not. For this purpose we want to define g(k) = 1 for k ∈ {A+,C+,G+,T+}
and g(k) = 0 for k ∈ {A−,C−,G−,T−}. Then G(i |x) is precisely the posterior
probability according to the model that base i is in a CpG island.

In the case where we have a labelling of the states defining a partition of them
(as we in fact have with the CpG island model, labelling them as ‘+’ or ‘−’)
it is possible to use (3.16) to find the most probable label at each position of the
sequence. This is not quite the most probable global labelling of a given sequence.
That, however, is not entirely straightforward. See Schwartz & Chow [1990] and
Krogh [1997b] for further discussion of this. Change begin

Example: Prediction of CpG islands

Now CpG islands can be predicted from our model. By the Viterbi algorithm we
can find the most probable path through the model. When this path goes through

62 3 Markov chains and hidden Markov models

P
(fa

ir)

0 100 200 300 400 500 600 700 800 900 1000

Figure 3.7 The posterior probability of the die being fair, but using proba-
bility 0.01 for switching to the loaded die (cf. Figure 3.6).

the + states, a CpG island is predicted. For the set of 41 sequences, each with
a putative CpG island, all the islands are found except for two (false negatives),
and 121 new ones are predicted (false positives). The real CpG islands are quite
long (of the order of 1000 bases), whereas the predicted ones are short, and a
CpG island is usually predicted as several short ones. By applying the two simple
post-processing steps (1) concatenate predictions less than 500 bases apart (2)
discard predictions shorter than 500, the number of false positives are reduced to
67.

Using posterior decoding, the same two CpG islands are missed and 236 false
positives are predicted. Using the same post-processing as above this number is
reduced to 83. For this problem, there is not a big difference between the two
methods, except that the posterior decoding predicts even more very short is-
lands. It is possible that some of the false positives are real CpG islands. The two
false negatives are perhaps wrongly labelled, but it is also possible that a more
sophisticated model is needed for capturing all the features of these signals.Change end

Example: The occasionally dishonest casino, part 4

The model for the casino is changed, so there is only a probability of 0.01 for
switching from fair to loaded. Obviously the probability of staying with the fair
die must then be 0.99, but all other probabilities are unchanged. From this model
1000 random rolls are generated. From these rolls the most probable path found
by the Viterbi algorithm never visits the loaded die state. In Figure 3.7 the poste-
rior probability for the dice being fair is shown for these rolls. Although not per-
fect, posterior decoding would predict something reasonably close to the truth.

3.3 Parameter estimation for HMMs

Probably the most difficult problem faced when using HMMs is that of speci-
fying the model in the first place. There are two parts to this: the design of the
structure, i.e. what states there are and how they are connected, and the assign-
ment of parameter values, the transition and emission probabilities akl and ek(b).
In this section we will discuss the parameter estimation problem, for which there

3.3 Parameter estimation for HMMs 63

is a well-developed theory. In the next section we will consider model structure
design, which is more of an art.

The framework in which we will be working is to assume that we have a set of
example sequences of the type that we want the model to fit well, known as train-
ing sequences. Let these be x1, . . . , xn . We assume that they are independent, and
thus that the joint probability of all the sequences given a particular assignment
of parameters is the product of the probabilities of the individual sequences. In
fact, we work in log space, and so with the log probability of the sequences,

l(x1, . . . , xn|θ) = log P(x1, . . . , xn|θ) =
n∑

j=1

log P(x j |θ), (3.17)

where θ represents the entire current set of values of the parameters in the model
(all the as and es). This is equal to the log likelihood of the model; see Chapter 11.

Estimation when the state sequence is known

Just as it was easier to write down the probability of a sequence when the path
was known, so it is easier to estimate the probability parameters when the paths
are known for all the examples. Frequently this is the case. An example would
be if we were given a set of genomic sequences in which the CpG islands were
already labelled, based on experimental data. Other examples would be for an
HMM that predicted secondary structure, with training sequences obtained from
the set of proteins with known structures, or for an HMM predicting genes from
genomic sequences, where the transcript structure has been determined by cDNA
sequencing.

When all the paths are known, we can count the number of times each particu-
lar transition or emission is used in the set of training sequences. Let these be Akl

and Ek(b). Then, as shown in Chapter 11, the maximum likelihood estimators for
akl and ek(b) are given by

akl = Akl∑
l ′ Akl ′

and ek(b) = Ek(b)∑
b′ Ek(b′)

. (3.18)

The estimation equation for akl is exactly the same as for a simple Markov chain.
As always, maximum likelihood estimators are vulnerable to overfitting if there

are insufficient data. Indeed if there is a state k that is never used in the set of
example sequences, then the estimation equations are undefined for that state,
because both the numerator and denominator will have value zero. To avoid such
problems it is preferable to add predetermined pseudocounts to the Akl and Ek(b)
before using (3.18).

Akl = number of transitions k to l in training data+ rkl ,

Ek(b) = number of emissions of b from k in training data+ rk(b).

64 3 Markov chains and hidden Markov models

The pseudocounts rkl and rk(b) should reflect our prior biases about the proba-
bility values. In fact they have a natural probabilistic interpretation as the param-
eters of Bayesian Dirichlet prior distributions on the probabilities for each state
(see Chapter 11). They must be positive, but do not need to be integers. Small
total values

∑
l ′ rkl ′ or

∑
b′ rk(b′) indicate weak prior knowledge, whereas larger

total values indicate more definite prior knowledge, which requires more data to
modify it.

Estimation when paths are unknown: Baum–Welch and Viterbi
training

When the paths are unknown for the training sequences, there is no longer a
direct closed-form equation for the estimated parameter values, and some form of
iterative procedure must be used. All the standard algorithms for optimisation of
continuous functions can be used; see for example Press et al. [1992]. However,
there is a particular iteration method that is standardly used, known as the Baum–
Welch algorithm [Baum 1972]. This has a natural probabilistic interpretation.
Informally, it first estimates the Akl and Ek(b) by considering probable paths for
the training sequences using the current values of akl and ek(b). Then (3.18) is
used to derive new values of the as and es. This process is iterated until some
stopping criterion is reached.

It is possible to show that the overall log likelihood of the model is increased
by the iteration, and hence that the process will converge to a local maximum.
Unfortunately, there are usually many local maxima, and which one you end up
with depends strongly on the starting values of the parameters. The problem of
local maxima is particularly severe when estimating large HMMs, and later we
will discuss various ways to help deal with it.

More formally, the Baum–Welch algorithm calculates Akl and Ek(b) as the ex-
pected number of times each transition or emission is used, given the training
sequences. To do this it uses the same forward and backward values as the poste-
rior probability decoding method. The probability that akl is used at position i in
sequence x is (see Exercise 3.5)

P(πi = k,πi+1 = l|x ,θ) = fk(i)aklel(xi+1)bl(i +1)
P(x)

. (3.19)

From this we can derive the expected number of times that akl is used by summing
over all positions and over all training sequences,

Akl =
∑

j

1
P(x j)

∑

i

f j
k (i)aklel(x

j
i+1)b j

l (i +1), (3.20)

where f j
k (i) is the forward variable fk(i) defined in (3.10) calculated for sequence

3.3 Parameter estimation for HMMs 65

j , and b j
l (i) is the corresponding backward variable. Similarly, we can find the

expected number of times that letter b appears in state k,

Ek(b) =
∑

j

1
P(x j)

∑

{i |x j
i =b}

f j
k (i)b j

k (i), (3.21)

where the inner sum is only over those positions i for which the symbol emitted
is b.

Having calculated these expectations, the new model parameters are calculated
just as before using (3.18). We can iterate using the new values of the parameters
to obtain new values of the As and Es as before, but in this case we are converging
in a continuous-valued space, and so will never in fact reach the maximum. It is
therefore necessary to set a convergence criterion, typically stopping when the
change in total log likelihood is sufficiently small. Other stop criteria than the log
likelihood change can be used for the iteration. For instance the log likelihood
can be normalised by the number of sequences n and maybe also by the sequence
lengths, so that you consider the change in the average log likelihood per residue.
We can summarise the Baum–Welch algorithm like this:

Algorithm: Baum–Welch

Initialisation: Pick arbitrary model parameters.
Recurrence:

Set all the A and E variables to their pseudocount values r (or to zero).
For each sequence j = 1 . . .n:

Calculate fk(i) for sequence j using the forward algorithm (p. 59).
Calculate bk(i) for sequence j using the backward algorithm (p. 60). Page numbers added

instead of algorithm
numbers

Add the contribution of sequence j to A (3.20) and E (3.21).
Calculate the new model parameters using (3.18).
Calculate the new log likelihood of the model.

Termination:
Stop if the change in log likelihood is less than some predefined threshold
or the maximum number of iterations is exceeded. ✁

As indicated here, it is normal to add pseudocounts to the A and E values
just as in the case where the state paths are known. This works well, but the
normal Bayesian interpretation in terms of Dirichlet priors does not carry through
rigorously in this case; see Chapter 11.

The Baum–Welch algorithm is a special case of a very powerful general ap-
proach to probabilistic parameter estimation called the EM algorithm. This al-
gorithm and the derivation of Baum–Welch is given in Section 11.6 of
Chapter 11.

66 3 Markov chains and hidden Markov models

An alternative to the Baum–Welch algorithm is frequently used, which we will
call Viterbi training. In this approach, the most probable paths for the training se-
quences are derived using the Viterbi algorithm given above, and these are used
in the re-estimation process given in the previous section. Again, the process is
iterated when the new parameter values are obtained. In this case the algorithm
converges precisely, because the assignment of paths is a discrete process, and
we can continue until none of the paths change. At this point the parameter es-
timates will not change either, because they are determined completely by the
paths. Unlike Baum–Welch, this procedure does not maximise the true likeli-
hood, i.e. P(x1, . . . , xn|θ) regarded as a function of of the model parameters θ .
Instead, it finds the value of θ that maximises the contribution to the likelihoodChange of wording to

fit equation on line. P(x1, . . . , xn ,π∗(x1), . . . ,π∗(xn)|θ) from the most probable paths for all the se-
quences. Probably for this reason, Viterbi training performs less well in general
than Baum–Welch. However, it is widely used, and it can be argued that when the
primary use of the HMM is to produce decodings via Viterbi alignments, then it
is good to train using them.

Example: The occasionally dishonest casino, part 5

We are suspicious that a casino is operated as described in the example on p. 55,Numbered example
reference changed. but we do not know for certain. Night after night we collect data by simply ob-

serving rolls. When we have enough, we want to estimate a model. Assume the
data we collected were the 300 rolls shown in Figure 3.5. From this sequence of
observations a model was estimated by the Baum–Welch algorithm. Initially all
the probabilities were set to random numbers. Here are diagrams of the model
that generated the data (identical to the one in the example on p. 55) and the esti-Numbered example

reference changed. mated model.

Fair

1: 1/6
2: 1/6
3: 1/6
4: 1/6
5: 1/6
6: 1/6

Loaded

1: 1/10
2: 1/10
3: 1/10
4: 1/10
5: 1/10
6: 1/2

0.95 0.9

0.05

0.1

Fair

1: 0.19
2: 0.19
3: 0.23
4: 0.08
5: 0.23
6: 0.08

Loaded

1: 0.07
2: 0.10
3: 0.10
4: 0.17
5: 0.05
6: 0.52

0.73 0.71

0.27

0.29

You can see they are fairly similar, although the estimated transition probabilities
are quite different from the real ones. This is partly a problem of local minima,
and by trying more times it is actually possible to obtain a model closer to the cor-
rect one. However, from a limited amount of data it is never possible to estimate
the parameters exactly.

3.3 Parameter estimation for HMMs 67

‘data not shown’
changed to ‘data are
not shown’ for nicer
line break.

To illustrate the last point, 30 000 random rolls were generated (data are not
shown!), and a model was estimated. This came very close to the correct one:

Fair

1: 0.17
2: 0.17
3: 0.17
4: 0.17
5: 0.17
6: 0.15

Loaded

1: 0.10
2: 0.11
3: 0.10
4: 0.11
5: 0.10
6: 0.48

0.93 0.88

0.07

0.12

To see how good these models are compared to just assuming a fair die all the
time, the log-odds per roll was calculated using the 300 observations for the three
models:

The correct model 0.101 bits
Model estimated from 300 rolls 0.097 bits
Model estimated from 30 000 rolls 0.100 bits

The worst model estimated from 300 rolls has almost the same log-odds as the
two other models. That is because it is being tested on the same data as it was
estimated from. Testing it on an independent set of rolls yields significantly lower
log-odds than the other two models.

Exercises
3.5 Derive the result (3.19). Use the fact that

P(πi = k,πi+1 = l|x ,θ) = 1
P(x |θ)

P(x ,πi = k,πi+1 = l|θ),

and that this again can be written in terms of P(x1, . . . , xi ,πi = k|θ) and

P(xi+1, . . . , xL ,πi+1 = l|x1, . . . , xi ,θ ,πi = k)

= P(xi+1, . . . , xL ,πi+1 = l|θ ,πi = k).

3.6 Derive (3.21).

Modelling of labelled sequences

In the above example with CpG islands we have seen how HMMs can be used to
predict the labelling of unannotated sequences. In these examples we had to train
the models of CpG islands separately from the model of non-CpG islands and
then combine them into a larger HMM afterwards. This separate estimation can
be quite tedious, especially if there are more than two different classes involved.
Also, if the transitions between the submodels are ambiguous, so for instance a
given sequence can use more than one transition from the CpG submodel to the
other submodel, then the estimation of the transitions is not a simple counting

68 3 Markov chains and hidden Markov models

x1

−
x2

−
x3

−
x4

+
x5

+
x6

+
x7

+
x8

−
x9

−
x10

−
Sequence

Labels

St
at

e 1
2
3
4
5
6
7
8

−
−
−
−
+
+
+
+

...

...

f = 0

f = 0 f = 0

f
calculated
as usual

f
calculated
as usual

f
calculated
as usual

Figure 3.8 The forward table for a model with four states labelled + and
four labelled −. Each column corresponds to an observation and each row
to a state of the model. The first ten residues shown, x1, . . . , x10, are assumed
to be labelled −−−++++−−−.

problem. There is, however, a more straightforward method to estimate every-
thing at once, which we will describe now.

The starting point is the combined model of all the classes, where we have
assigned a class label to each state. To model CpG islands the natural labels are
‘+’ for the island states and ‘−’ for the non-island states. We also have labels on
the observations x = x1, . . . , xL , which we we call y = y1, . . . , yL . The yi is ‘+’ if
xi is part of a CpG island and ‘−’ otherwise. In the Baum–Welch algorithm (or
the Viterbi alternative) we now only allow valid paths through the model when
calculating the f s and bs. A valid path is one where the state labels and sequence
labels are the same, i.e., πi has label yi . During the forward and backward algo-
rithms this corresponds to setting fl(i) = 0 and bl(i) = 0 for all the states l with
a label different from yi (see Figure 3.8).

Discriminative estimation
Unless there are ambiguous transitions between submodels, the above estimation
procedure gives the same result as if the submodels were estimated separately
by the Baum–Welch algorithm and then combined with appropriate transitions
afterwards. This actually corresponds to maximising the likelihood

θ M L = argmax
θ

P(x , y|θ).

Usually our primary interest is in obtaining good predictions of y, so it is prefer-‘instead’ added for
good line break. able to maximise P(y|x ,θ) instead. This is called conditional maximum likeli-

hood (CML),

θC M L = argmax
θ

P(y|x ,θ); (3.22)

see for example Juang & Rabiner [1991] and Krogh [1994]. A related criterion is
called maximum mutual information or MMI [Bahl et al. 1986].

3.4 HMM model structure 69

The likelihood P(y|x ,θ) can be rewritten as

P(y|x ,θ) = P(x , y|θ)
P(x |θ)

,

where P(x , y|θ) is the probability calculated by the forward algorithm for la-
belled sequences described above, and P(x |θ) is the probability calculated by the
standard forward algorithm disregarding all the labels. There is no EM algorithm
for optimising this likelihood, and the estimation becomes more complex; see for
example Normandin & Morgera [1991] and the references above.

3.4 HMM model structure

Choice of model topology

So far we have assumed that transitions are possible from any state to any other
state. Although it is tempting to start with a fully connected model, i.e. one in
which all transitions are allowed, and ‘let the model find out for itself’ which
transitions to use, it almost never works in practice. For problems of any re-
alistic size it will usually lead to very bad models, even with plenty of train-
ing data. Here the problem is not over fitting, but local maxima. The less con-
strained the model is, the more severe the local maximum problem becomes.
There are methods that attempt to adapt the model topology based on the data
by adding and removing transitions and states [Stolcke & Omohundro 1993;
Fujiwara, Asogawa & Konagaya 1994]. However, in practice successful HMMs
are constructed by carefully deciding which transitions are to be allowed in the
model, based on knowledge about the problem under investigation.

To disable the transition from state k to state l corresponds to setting akl = 0.
If we use Baum–Welch estimation (or the Viterbi approximation) then akl will
still be zero after the re-estimation process, because when the probability is zero
the expected number of transitions from k to l will also be zero. Therefore all the
mathematics is unchanged even if not all transitions are possible.

We should choose a model which has an interpretation in terms of our knowl-
edge of the problem. For instance, to model CpG islands it was important that the
model was capable of giving a different probability to a CG dinucleotide in the
island states from in the non-island states, because that was expected to be the
main determinator for CpG islands.

Duration modelling
This section was
moved to here from
section 3.6

When modelling a phenomenon where for instance the nucleotide distribution
does not change for a certain length of DNA, the simplest model design is to
make a state with a transition to itself with probability p. We did this with both
our CpG island and our dishonest casino example. After entering the state there

70 3 Markov chains and hidden Markov models

is a probability 1 − p of leaving it, so the probability of staying in the state for ln changed to l. Paren.
added after eq. residues is

P(l residues) = (1− p)pl−1. (3.23)

(The emission probabilities are disregarded.) This exponentially decaying distri-
bution on lengths (called a geometric distribution) can be inappropriate in some
applications, where the distribution of lengths is important and significantly dif-
ferent from exponential. More complex length distributions can be modelled by
introducing several states with the same distribution over residues and transitions
between each other. For instance a (sub-) model like this:

will give sequences of a minimum length of 5 residues and an exponentially de-
caying distribution over longer sequences. Similarly, a model like this:

can model any distribution of lengths between 2 and 10.Change begin
A more subtle way of obtaining a non-geometric length distribution is to use an

array of n states, each with a transition to itself of probability p and a transition
to the next of probability 1− p:

p

1−p

p

1−p

p

1−p

p

1−p

Obviously the smallest sequence length such a model can capture is n. For any
given path of length l through the model, the probability of all its transitions
is pl−n(1 − p)n (we are disregarding emission probabilities for now, as above).
The number of possible paths through the states is

(l−1
n−1

)
, so the total probability

summed over all possible paths is

P(l) =
(

l −1
n −1

)
pl−n(1− p)n . (3.24)

This distribution is called a negative binomial and it is shown in Figure 3.9 for
p = 0.99 and n ≤ 5. For small lengths the number of paths through the model
grows faster than the geometrical distribution decays, and therefore the distribu-
tion becomes bell-shaped. The number of paths depends on the model topology,
and it is possible to make more general models where the number of paths has a
different dependence on n and l. For continuous Markov processes the types of

3.4 HMM model structure 71

0

0.001

0.002

0.003

0.004

0 200 400 600 800 1000

P(
l)

l

n=1
n=2
n=3
n=4
n=5

Figure 3.9 The probability distribution over lengths for models with p =
0.99 and n identical states, with n ranging from 1 to 5.

distributions that can be obtained are called Erlang distributions or more gener-
ally phase-type distributions, see for example Asmussen [1987]. Change end

Alternatively, it is possible to model the length distribution explicitly. As length
is equivalent to time in many signal processing applications, this is called dura-
tion modelling. The price one has to pay is that algorithms are much slower. See
Rabiner [1989] for more details.

Silent states

We have already seen examples of states that do not emit symbols in an HMM,
the begin and end states. Such states are called silent states or null states, and
they can also be useful in other places in an HMM. In Chapter 5 we will see an
example where all states in a chain of states need to be connected to all states later
in the chain. The length of such a chain is often 200 states or more, and connect-
ing them appropriately with transitions would require roughly 20 000 transition
probabilities (assuming 200 states). This number is too large to be reliably es-
timated from realistic datasets. Instead, by using silent states, we can get away
with around 800 transitions.

The situation is as follows: to allow for arbitrary deletions a chain of states
needs to be completely ‘forward connected’.

Instead we can connect all the states to a parallel chain of silent states, represented
here by circles.

72 3 Markov chains and hidden Markov models

Because the silent states do not emit any letters, it is possible to get from any
‘real’ state to any later ‘real’ state without emitting any letters.

A price is paid for the reduction in the number of parameters. The fully con-
nected model can have for instance high probability transitions from state 1 to
state 5 and from state 2 to state 4, but low probability ones for transitions 1 to 4
and 2 to 5. This would not be possible with the model using silent states.

So long as there are no loops consisting entirely of silent states, it is easy to ex-
tend all the HMM algorithms to incorporate them. The condition that there are no
loops mean that the states can be numbered so that any transition between silent
states goes from a lower to a higher numbered state. For the forward algorithm,
the change is as follows:

(i) For all ‘real’ states l, calculate fl(i +1) as before from fk(i) for states k.Change
(ii) For any silent state l, set fl(i +1) to

∑
k fk(i +1)akl for ‘real’ states k.Change

(iii) Starting from the lowest numbered silent state l add
∑

k fk(i + 1)akl to
fl(i +1) for all silent states k < l.

The change to the Viterbi algorithm is exactly the same (sums replaced by max-
imisation of course), and for the backward algorithm the change is essentially the
same except in the third step the silent states are updated in reverse order.

If there are loops consisting entirely of silent states, the situation gets a little
more complicated. It is possible to eliminate the silent states from the calculation
by calculating (exactly) the effective transition probabilities between real states
in the model, which involves inverting the transition matrix for the Markov model
of silent states [Cox & Miller 1965]. Often, however, these effective transitions
correspond to a fully connected model, and this leads to a substantial increase in
the complexity of the model. Usually it is best to simply make sure such loops do
not exist.

Exercises

3.7 Calculate the total number of transitions needed in a forward connected
model as the one shown above with a length of L . Calculate the same
number for a model with silent states (as above).Change begin

3.8 Show that the number of paths through an array of n states is indeed(l−1
n−1

)
for length l as in (3.24).

3.9 Consider the model with n states with self-loops giving rise to equation
(3.24). What is the probability for the most likely path through the model

3.5 More complex Markov chains 73

for a sequence of length l (when ignoring emission probabilities)? Is this
type of length modelling useful with the Viterbi algorithm? Change end

3.5 More complex Markov chains

High order Markov chains

An nth order Markov process is a stochastic process where each event depends
on the previous n events, so

P(xi |xi−1, xi−2, . . . , x1) = P(xi |xi−1, . . . , xi−n). (3.25)

The Markov chains we have discussed so far are of order 1.
An nth order Markov chain over some alphabet A is equivalent to a first order

Markov chain over the alphabet An of n-tuples. This follows from the simple fact
that P(xk |xk−1 . . . xk−n) = P(xk , xk−1 . . . xk−n+1|xk−1 . . . xk−n) (the probability of
A and B given B is the probability of A given B). That is, the probability of xk

given the n-tuple ending in xk−1 is equal to the probability of the n-tuple ending
in xk given the n-tuple ending in xk−1.

Consider the simple example of a second order Markov chain for sequences of
only two different characters A and B. A sequence is translated to a sequence of
pairs, so for instance the sequence ABBAB becomes AB-BB-BA-AB. The equiv-
alent four-state first order Markov chain will look like this:

AA AB

BA BB

In this equivalent model not all transitions are allowed (or alternatively, some of
the transition probabilities are zero). This is because only two different pairs can
follow a given letter; the state AB for instance can only be followed by the states
BA and BB. No sequence exists that can go from state AB to state AA. Similarly,
a second order model for DNA is equivalent to a first order model over an alpha-
bet of the 16 dinucleotides. A sequence of five bases, CGTCA, corresponds to a
chain of four states, CG-GT-TC-CA, in a dinucleotide model.

Despite the theoretical equivalence between an nth order model and a first or-
der model, the framework of high order models (meaning models of order greater Change begin
than 1) is sometimes more convenient. Theoretically the high order models are Change end
treated in a way completely equivalent to first order models.

74 3 Markov chains and hidden Markov models

GTCAGATGAGCAAAGTCAGACTCGCAATT

ATGAACGTATCCCAGTAACGCC
start

codon

stop
codon

DNA sequence

genes

codons

codons

codons

AGC

GCA

Figure 3.10 The organisation of genes in prokaryotes.

Finding prokaryotic genes

An example is given by a model for identifying prokaryotic genes. Genes of
prokaryotes (bacteria) have a very simple one-dimensional structure. A gene cod-
ing for a protein starts with a start codon, then has a number of codons coding
for amino acids, and ends with a stop codon; see Figure 3.10. Codons are DNA
nucleotide triplets of which 61 code for amino acids and three are stop codons.
In order to focus on the modelling, many complications such as frame shifts and
non-protein genes are ignored here.

It is very easy to find good gene candidates by simply looking for stretches of
DNA with the correct structure, i.e. starting with one of the three possible start
codons, continuing with a number of non-stop codons and ending with one of
the three stop codons. Such a gene candidate is called an open reading frame or
just an ORF. Usually there are many overlapping ORFs that have the same stop
codon, but different start codons. (The term ORF is often used for the maximal
open reading frame between two stop codons, but we shall use it for all possible
gene candidates.) There are many more ORFs than real genes, and here we will
sketch possible ways of distinguishing between a non-coding ORF and a real
gene.

In this example DNA from the bacterium E. coli is used (the dataset is de-
scribed in detail in Krogh, Mian & Haussler [1994]). We consider only genes
more than 100 nucleotides long. In the dataset there are 1100 such genes. This
set is arbitrarily divided into a training set of 900 for training our models, and a
test set containing the remaining 200 genes.

3.5 More complex Markov chains 75

-0.05 0.00 0.05 0.10
Bits per nucleotide

0

40

80

Figure 3.11 Histograms of the log-odds per nucleotide for all NORFs
(grey) and genes (black line) according to a first order Markov chain. Be-
cause of the large number of NORFs, the histogram bin size is five times
smaller for the NORFs.

We estimate a first order model just as we did for the CpG islands early in
this chapter and test how well it discriminates genes from other ORFs. In the test
set we found roughly 6500 ORFs with a length of more than 100 bases. ORFs
that share the stop codon with a known real gene were not included, because they
would generally score very well and make our subsequent analysis more difficult.
The remaining ORFs that are not labelled as coding will be called NORFs (for
non-coding ORFs).

In Figure 3.11 a histogram is shown of the log-odds per nucleotide. As the null
model for calculating log-odds we used the simplest possible, with the probability
for each nucleotide equal to the frequency by which it occurs in all the data.
The average log-odds per nucleotide for all the genes is 0.018, whereas it is half
as much (0.009) for the NORFs, but the variance makes it almost useless for
discrimination. You could fool yourself into thinking that the model had a decent
discriminative power if you plotted the histogram of log-odds without dividing by
the sequence length, because the genes are longer on average than NORFS, and
therefore also the total log-odds is larger for the NORFs. Almost all the apparent
information about genes would come from the length distribution and not from
the model.

It is worth noticing that the average of the histogram is not at 0 bits, and that
the averages of the two distributions (genes and NORFs) are quite close. This
indicates that the Markov chain has indeed found a non-random correlation be-
tween nucleotide pairs, but it is essentially the same in coding and non-coding
regions. In a second order chain, the probability of a nucleotide depends on the
two previous ones, so it spans the length of a codon. Therefore we also tried a
second order model, but the result is almost identical to the one for the first or-
der model, so we do not show the histogram. It would probably not help much

76 3 Markov chains and hidden Markov models

to switch to a Markov chain of even higher order, because these models do not
separate the three reading frames, i.e. the three different nucleotide positions in
the codon.

It is possible to make a high order inhomogeneous Markov chain (discussed
in the next section) for modelling the bases in three different reading frames,
but since our goal is to score ORFs, we will do it differently. The sequences are
transformed to sequences of codons. An arbitrary symbol is assigned to each of
the 64 codons, and all genes and NORFs are translated to this alphabet (yielding
sequences of one-third the length of the nucleotide sequences). Notice that this
transformation is slightly different from the one above for transforming an nth
order model into a first order one, because the triplets are non-overlapping.

A 64-state first order Markov chain was estimated from the translated se-
quences and tested on the genes in the test set and the NORFs in exactly the
same way as the models above. The result is shown in Figure 3.12. Although the
separation is not perfect, we see that it is much better than for the other model.
Notice that the distribution we compare to in the log-odds score now is a uniform
distribution over codons. The grey peak is centred around 0, indicating that the
Markov chain has found a signal that is special to coding regions, and that codon
usage is essentially random in the average NORF, and that a significant fraction
of the NORFs scoring highly represent real genes that are not labelled as such in
our data. It is likely that most of the ORFs scoring above 0.3–0.35 bits in this plot
are overlapping with real genes. The NORF histogram uses a smaller bin size (as
in Figure 3.11), and if the same bin size was used, the NORF histogram would
be about five times higher.Change begin

If the log-odds is not normalised by sequence length the discrimination im-
proves significantly, because real genes tend to be longer than NORFs, see
Figure 3.12.Change end

Exercises

3.10 Calculate the number of parameters in the above codon model. The dataset
contains on the order of 300000 codons. Would it be feasible to estimate
a second order Markov chain from this dataset?

3.11 How can the above gene model be improved?

Inhomogeneous Markov chains

As we saw above, a successful Markov model of genes needs to model the codon
statistics. This can also be done without translating to another alphabet. It is well
known that in genes the three codon positions have quite different statistics, and
therefore it is natural to use three different Markov chains to model coding re-
gions. The three models are numbered 1 to 3 according to the position in the‘would be more

natural’ changed to ‘is
natural’.

3.5 More complex Markov chains 77

-1.0 -0.5 0.0 0.5 1.0
Bits per nucleotide

0

40

80

100 200 300 400 500 600 700 800
Sequence length

-100

0

100

200

300

400

500

B
its

Figure 3.12 The top plot shows the histograms of NORFs and genes for the
Markov chain of codons (cf. Figure 3.11). Below, the log-odds is shown as
a function of length for genes (+) and NORFs (·).

codon. Assuming that x1 is in codon position 3, the probability of x2, x3, . . . would
then be

a1
x1x2

a2
x2x3

a3
x3x4

a1
x4x5

a2
x5x6

· · ·

where the parameters for model k are called ak . This is called an inhomogeneous
Markov chain. Here we assumed the chain was first order, but it is of course
possible to extend it to order n. The estimation of the parameters is a straight-
forward extension of the estimation of the homogeneous models described in
Section 3.1: for a second order inhomogeneous Markov chain as above the pa- Change begin
rameters of model 1 are estimated by counting the triplets with the last base in
codon position 1, and similarly for model 2 and 3. Change end

Inhomogeneous Markov chains are used extensively in the GENEMARK gene-
finding program [Borodovsky & McIninch 1993], which is currently the most
widely used method for prokaryotic genefinding. Inhomogeneous models of or- ‘whole bacterial

genome sequences’
changed to ‘different
bacterial genomes’.

der up to five of coding regions have been combined with homogeneous models
of the non-coding regions to localise genes in a number of different bacterial
genomes.

78 3 Markov chains and hidden Markov models

The first order model described above can also be constructed as an HMM,
with the number of states equal to three times the length of the alphabet (a total
of 12 for DNA). Higher order models can be made by adding many additional
states to the HMM. However, it is also possible to have nth order Markov emis-
sion probabilities in the states of an HMM, in which the emission probabilities
are conditioned on the n previous characters, so the emission probabilities (3.5)Change begin
become

ek(b|b1, . . . ,bn) = P(xi |πi = k, xi−1 = b1, . . . , xi−n = bn).

All the algorithms derived for standard HMMs can be used with only obvious
alterations for models with these emissions. Such models are also being used forChange end
genefinding [Krogh 1998].

Exercise
3.12 Draw the HMM that corresponds to the first order inhomogeneous Mar-

kov chain given above.

3.6 Numerical stability of HMM algorithms
Section heading
changed. Also
headings below.

Even on modern floating point processors we will run into numerical problems
when multiplying many probabilities in the Viterbi, forward, or backward algo-
rithms. For DNA for instance, we might want to model genomic sequences of
100 000 bases or more. Assuming that the product of one emission and one tran-
sition probability is typically 0.1, the probability of the Viterbi path would then be
of the order of 10−100000. Most computers would behave badly with such num-
bers: either an underflow error would occur and the program would crash; or,
worse, the program would keep running and produce arbitrary wrong numbers.
There are two different ways of dealing with this problem.

The log transformation

For the Viterbi algorithm we should always use the logarithm of all probabilities.
Since the log of a product is the sum of the logs, all the products are turned
into sums. Assuming the logarithm base 10, the log of the above probability of
10−100000 is just −100000. Thus, the underflow problem is essentially solved.
Additionally, the sum operation is faster on some computers than the product, so
on these computers the algorithm will also run faster.

We will put a tilde on all the model parameters after taking the log, so for
example ãkl = logakl . Then the recursion relation for the Viterbi algorithm (3.8)
becomes

Vl(i +1) = ẽl(xi+1)+max
k

(Vk(i)+ ãkl),

3.6 Numerical stability of HMM algorithms 79

where we use V for the logarithm of v. The base of the logarithm is not important
as long as it is larger than 1 (such as 2, e, and 10).

It is more efficient to take the log of all the model parameters before running
the Viterbi algorithm, to avoid calling the logarithm function repeatedly during
the dynamic programming iteration. ‘forward–backward

algorithm’ changed to
‘the forward and
backward algorithms

For the forward and backward algorithms there is a problem with the log trans-
formation: the logarithm of a sum of probabilities cannot be calculated from the
logs of the probabilities without using exponentiation and log functions, which
are computationally expensive. However, the situation is not in practice so bad.
Assume you want to calculate r̃ = log(p + q) from the log of the probabilities,
p̃ = log p and q̃ = logq . The direct way is to do r̃ = log(exp(p̃) + exp(q̃)). By
pulling out p̃, one can write this as

r̃ = p̃ + log(1+ exp(q̃ − p̃)).

It is possible to approximate the function log(1 + exp(x)) by interpolation from
a table. For a reasonable level of accuracy, the table can actually be quite small,
assuming we always pull out the largest of p̃ and q̃ , because exp(q̃ − p̃) rapidly
approaches zero for large (p̃ − q̃).

Scaling of probabilities

An alternative to using the log transformation is to rescale the f and b variables,
so they stay within a manageable numerical interval [Rabiner 1989]. For each i
define a scaling variable si , and define new f variables

f̃l(i) = fl(i)∏i
j=1 sj

. (3.26)

From this it is easy to see that

f̃l(i +1) = 1
si+1

el(xi+1)
∑

k

f̃k(i)akl ,

so the forward recursion (3.11) is only changed slightly. This will work however
we define si , but a convenient choice is one that makes

∑
l f̃l(i) = 1, which means

that

si+1 =
∑

l

el(xi+1)
∑

k

f̃k(i)akl .

The b variables have to be scaled with the same numbers, so the recursion step
in (3.3) becomes

b̃k(i) = 1
si

∑

l

akl b̃l(i +1)el(xi+1)

This scaling method normally works well, but in models with many silent

80 3 Markov chains and hidden Markov models

states, such as the one we describe in Chapter 5, underflow errors can still
occur.

Exercises
3.13 Use (3.26) to prove that P(x) = ∏L

j=1 sj with the above choice of si . It is
of course wiser to calculate log P(x) = ∑

j logsj .
3.14 Use the result of the previous exercise to show that the equation (3.20)

actually simplifies when using the scaled f and b variables. Also, derive
the result (3.21) for the scaled variables.

3.7 Further reading
Added one line with
references. More basic introductions to HMMs include Rabiner & Juang [1986] and Krogh

[1998].
Some early applications of HMM-like models to sequence analysis was done

by Borodovsky et al. [1986a; 1986b; 1986c] who used inhomogeneous Markov
chains as described on p. 76. This later led to the GENEMARK genefinder program
[Borodovsky & McIninch 1993]. Cardon & Stormo [1992] introduced an expec-
tation maximisation (EM) method, which has many similarities with an HMM,
for modelling protein binding motifs. Later applications of HMMs to genefind-
ing include Krogh, Mian & Haussler [1994], Henderson, Salzberg & FasmanChange begin
[1997], and Krogh [1997a,1997b,1998] as well as systems combining neural net-
works and HMMs [Stormo & Haussler 1994; Kulp et al. 1996; Reese et al. 1997;
Burge & Karlin 1997]. Such hybrid systems are also becoming quite popularChange end
for other applications; see for instance Bengio et al. [1992], Frasconi & Bengiochange of wording and

Burge ref added. [1994], Renals et al. [1994], Baldi & Chauvin [1995], and Riis & Krogh [1997].
Churchill [1989] used HMMs for modelling compositional differences be-Change begin

tween DNA from mitochondria and from the human X chromosome and bacter-
iophage lambda, and later for studying the compositional structure of genomes
[Churchill 1992]. Other applications include a three-state HMM for predictionChange end
of protein secondary structure [Asai, Hayamizu & Handa 1993], a HMM with
ten states in a ring for modelling an oscillatory pattern in nucleosomes [Baldi et
al. 1996], detection of short protein coding regions and analysis of translationChange begin
initiation sites in cyanobacteria [Yada & Hirosawa 1996; Yada, Sazuka & Hiro-
sawa 1997], characterization of prokaryotic and eukaryotic promoters [Pedersen
et al. 1996], and recognition of branch points [Tolstrup, Rouzé & Brunak 1997].Change end
Several other applications of HMMs will be discussed in the context of profile
HMMs in Chapters 5 and 6.

