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The� P� value� is� a� measure� of� statistical� evidence� that� appears� in� virtually� all� medical
research�papers.�Its�interpretation�is�made�extraordinarily�difficult�because�it�is�not�part�of
any�formal�system�of�statistical�inference.�As�a�result,�the�P�value’s�inferential�meaning�is
widely� and� often� wildly� misconstrued,� a� fact� that� has� been� pointed� out� in� innumerable
papers�and�books�appearing�since�at�least�the�1940s.�This�commentary�reviews�a�dozen�of
these� common� misinterpretations� and� explains� why� each� is� wrong.� It� also� reviews� the
possible�consequences�of�these�improper�understandings�or�representations�of�its�mean-
ing.�Finally,�it�contrasts�the�P�value�with�its�Bayesian�counterpart,�the�Bayes’�factor,�which
has�virtually�all�of�the�desirable�properties�of�an�evidential�measure�that�the�P�value�lacks,
most� notably� interpretability.� The� most� serious� consequence� of� this� array� of� P-value
misconceptions�is�the�false�belief�that�the�probability�of�a�conclusion�being�in�error�can�be
calculated�from�the�data�in�a�single�experiment�without�reference�to�external�evidence�or
the�plausibility�of�the�underlying�mechanism.
Semin�Hematol�45:135-140�©�2008�Elsevier�Inc.�All�rights�reserved.

T�he�P�value�is�probably�the�most�ubiquitous�and�at�the
same� time,� misunderstood,� misinterpreted,� and� occa-

sionally�miscalculated�index1,2� in�all�of�biomedical�research.
In�a�recent�survey�of�medical�residents�published�in�JAMA,
88%�expressed�fair�to�complete�confidence�in�interpreting�P
values,�yet�only�62%�of� these�could�answer�an�elementary
P-value�interpretation�question�correctly.3�However,�it�is�not
just�those�statistics�that�testify�to�the�difficulty�in�interpreting
P�values.�In�an�exquisite�irony,�none�of�the�answers�offered
for�the�P-value�question�was�correct,�as�is�explained�later�in
this�chapter.

Writing�about�P�values�seems�barely�to�make�a�dent�in�the
mountain�of�misconceptions;�articles�have�appeared�in�the
biomedical� literature� for� at� least� 70� years4-15� warning� re-
searchers�of�the�interpretive�P-value�minefield,�yet�these�les-
sons�appear� to�be�either�unread,� ignored,�not�believed,�or
forgotten�as�each�new�wave�of�researchers�is�introduced�to�the
brave�new�technical�lexicon�of�medical�research.

It�is�not�the�fault�of�researchers�that�the�P�value�is�difficult
to�interpret�correctly.�The�man�who�introduced�it�as�a�formal
research�tool,�the�statistician�and�geneticist�R.A.�Fisher,�could
not�explain�exactly� its� inferential�meaning.�He�proposed�a
rather�informal�system�that�could�be�used,�but�he�never�could
describe�straightforwardly�what�it�meant�from�an�inferential
standpoint.�In�Fisher’s�system,�the�P�value�was�to�be�used�as

a�rough�numerical�guide�of�the�strength�of�evidence�against
the�null�hypothesis.�There�was�no�mention�of�“error�rates”�or
hypothesis�“rejection”;�it�was�meant�to�be�an�evidential�tool,
to�be�used�flexibly�within�the�context�of�a�given�problem.16

Fisher� proposed� the� use� of� the� term� “significant”� to� be
attached�to�small�P�values,�and�the�choice�of�that�particular
word� was� quite� deliberate.� The� meaning� he� intended� was
quite�close�to�that�word’s�common�language�interpretation—
something�worthy�of�notice.� In�his� enormously� influential
1926�text,�Statistical�Methods� for�Research�Workers,� the�first
modern�statistical�handbook�that�guided�generations�of�bio-
medical�investigators,�he�said:

Personally,�the�writer�prefers�to�set�a�low�standard�of
significance�at�the�5�percent�point�. . . .�A�scientific�fact
should�be�regarded�as�experimentally�established�only�if
a�properly�designed�experiment�rarely�fails�to�give�this
level�of�significance.17

In�other�words,�the�operational�meaning�of�a�P�value�less
than�.05�was�merely�that�one�should�repeat�the�experiment. If
subsequent� studies� also� yielded� significant� P� values,� one
could�conclude�that�the�observed�effects�were�unlikely�to�be
the�result�of�chance�alone.�So�“significance”�is�merely�that:
worthy of attention in the form of meriting more experimen-
tation, but not proof in itself.

The P value story, as nuanced as it was at its outset, got
incomparably more complicated with the introduction of the
machinery of “hypothesis testing,” the mainstay of current
practice. Hypothesis testing involves a null and alternative
hypothesis, “accepting and rejecting” hypotheses, type I and
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II “error rates,” “power,” and other related ideas. Even though
we use P values in the context of this testing system today, it
is not a comfortable marriage, and many of the misconcep-
tions we will review flow from that unnatural union. In-
depth explanation of the incoherence of this system, and the
confusion that flows from its use can be found in the litera-
ture.16,18-20 Here we will focus on misconceptions about how
the P value should be interpreted.

The definition of the P value is as follows—in words: The
probability of the observed result, plus more extreme results, if the
null hypothesis were true; in algebraic notation: Prob(X ! x |
Ho), where “X” is a random variable corresponding to some
way of summarizing data (such as a mean or proportion), and
“x” is the observed value of that summary in the current data.
This is shown graphically in Figure 1.

We have now mathematically defined this thing we call a P
value, but the scientific question is, what does it mean? This is
not the same as asking what people do when they observe
P ".05. That is a custom, best described sociologically. Ac-
tions should be motivated or justified by some conception of
foundational meaning, which is what we will explore here.

Because the P value is not part of any formal calculus of
inference, its meaning is elusive. Below are listed the most
common misinterpretations of the P value, with a brief dis-
cussion of why they are incorrect. Some of the misconcep-
tions listed are equivalent, although not often recognized as
such. We will then look at the P value through a Bayesian lens
to get a better understanding of what it means from an infer-
ential standpoint.

For simplicity, we will assume that the P value arises from
a two-group randomized experiment, in which the effect of
an intervention is measured as a difference in some average
characteristic, like a cure rate. We will not explore the many
other reasons a study or statistical analysis can be misleading,
from the presence of hidden bias to the use of improper
models; we will focus exclusively on the P value itself, under
ideal circumstances. The null hypothesis will be defined as
the hypothesis that there is no effect of the intervention (Ta-
ble 1).

Misconception #1: If P!.05, the null hypothesis has only a
5% chance of being true. This is, without a doubt, the most
pervasive and pernicious of the many misconceptions about
the P value. It perpetuates the false idea that the data alone
can tell us how likely we are to be right or wrong in our
conclusions. The simplest way to see that this is false is to
note that the P value is calculated under the assumption that
the null hypothesis is true. It therefore cannot simultaneously
be a probability that the null hypothesis is false. Let us sup-
pose we flip a penny four times and observe four heads,
two-sided P ! .125. This does not mean that the probability
of the coin being fair is only 12.5%. The only way we can
calculate that probability is by Bayes’ theorem, to be dis-
cussed later and in other chapters in this issue of Seminars in
Hematology.21-24

Misconception #2: A nonsignificant difference (eg, P ".05)
means there is no difference between groups. A nonsignificant
difference merely means that a null effect is statistically con-
sistent with the observed results, together with the range of
effects included in the confidence interval. It does not make
the null effect the most likely. The effect best supported by
the data from a given experiment is always the observed
effect, regardless of its significance.

Misconception #3: A statistically significant finding is clini-

Figure 1 Graphical depiction of the definition of a (one-sided) P
value. The curve represents the probability of every observed out-
come under the null hypothesis. The P value is the probability of the
observed outcome (x) plus all “more extreme” outcomes, repre-
sented by the shaded “tail area.”

Table 1 Twelve P-Value Misconceptions

1 If P ! .05, the null hypothesis has only a 5% chance of being true.
2 A nonsignificant difference (eg, P >.05) means there is no difference between groups.
3 A statistically significant finding is clinically important.
4 Studies with P values on opposite sides of .05 are conflicting.
5 Studies with the same P value provide the same evidence against the null hypothesis.
6 P ! .05 means that we have observed data that would occur only 5% of the time under the null hypothesis.
7 P ! .05 and P <.05 mean the same thing.
8 P values are properly written as inequalities (eg, “P <.02” when P ! .015)
9 P ! .05 means that if you reject the null hypothesis, the probability of a type I error is only 5%.

10 With a P ! .05 threshold for significance, the chance of a type I error will be 5%.
11 You should use a one-sided P value when you don’t care about a result in one direction, or a difference in

that direction is impossible.
12 A scientific conclusion or treatment policy should be based on whether or not the P value is significant.
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cally important. This is often untrue. First, the difference may
be too small to be clinically important. The P value carries no
information about the magnitude of an effect, which is cap-
tured by the effect estimate and confidence interval. Second,
the end point may itself not be clinically important, as can
occur with some surrogate outcomes: response rates versus
survival, CD4 counts versus clinical disease, change in a mea-
surement scale versus improved functioning, and so on.25-27

Misconception #4: Studies with P values on opposite sides of
.05 are conflicting. Studies can have differing degrees of sig-
nificance even when the estimates of treatment benefit are
identical, by changing only the precision of the estimate, typ-
ically through the sample size (Figure 2A). Studies statisti-
cally conflict only when the difference between their results is
unlikely to have occurred by chance, corresponding to when
their confidence intervals show little or no overlap, formally
assessed with a test of heterogeneity.

Misconception #5: Studies with the same P value provide the
same evidence against the null hypothesis. Dramatically different
observed effects can have the same P value. Figure 2B shows
the results of two trials, one with a treatment effect of 3%
(confidence interval [CI], 0% to 6%), and the other with an
effect of 19% (CI, 0% to 38%). These both have a P value of
.05, but the fact that these mean different things is easily
demonstrated. If we felt that a 10% benefit was necessary to
offset the adverse effects of this therapy, we might well adopt
a therapy on the basis of the study showing the large effect
and strongly reject that therapy based on the study showing
the small effect, which rules out a 10% benefit. It is of course
also possible to have the same P value even if the lower CI is
not close to zero.

This seeming incongruity occurs because the P value de-
fines “evidence” relative to only one hypothesis—the null.
There is no notion of positive evidence—if data with a P !
.05 are evidence against the null, what are they evidence for?
In this example, the strongest evidence for a benefit is for 3%
in one study and 19% in the other. If we quantified evidence
in a relative way, and asked which experiment provided

greater evidence for a 10% or higher effect (versus the null),
we would find that the evidence was far greater in the trial
showing a 19% benefit.13,18,28

Misconception #6: P ! .05 means that we have observed
data that would occur only 5% of the time under the null hypoth-
esis. That this is not the case is seen immediately from the P
value’s definition, the probability of the observed data, plus
more extreme data, under the null hypothesis. The result with
the P value of exactly .05 (or any other value) is the most
probable of all the other possible results included in the “tail
area” that defines the P value. The probability of any individ-
ual result is actually quite small, and Fisher said he threw in
the rest of the tail area “as an approximation.” As we will see
later in this chapter, the inclusion of these rarer outcomes
poses serious logical and quantitative problems for the P
value, and using comparative rather than single probabilities
to measure evidence eliminates the need to include outcomes
other than what was observed.

This is the error made in the published survey of medical
residents cited in the Introduction,3 where the following four
answers were offered as possible interpretations of P ".05:

a. The chances are greater than 1 in 20 that a difference
would be found again if the study were repeated.

b. The probability is less than 1 in 20 that a difference this
large could occur by chance alone.

c. The probability is greater than 1 in 20 that a difference
this large could occur by chance alone.

d. The chance is 95% that the study is correct.

The correct answer was identified as “c”, whereas the ac-
tual correct answer should have read, “The probability is
greater than 1 in 20 that a difference this large or larger could
occur by chance alone.”

These “more extreme” values included in the P-value def-
inition actually introduce an operational difficulty in calcu-
lating P values, as more extreme data are by definition unob-
served data. What “could” have been observed depends on
what experiment we imagine repeating. This means that two
experiments with identical data on identical patients could
generate different P values if the imagined “long run” were
different. This can occur when one study uses a stopping
rule, and the other does not, or if one employs multiple
comparisons and the other does not.29,30

Misconception #7: P ! .05 and P ".05 mean the same
thing. This misconception shows how diabolically difficult it
is to either explain or understand P values. There is a big
difference between these results in terms of weight of evi-
dence, but because the same number (5%) is associated with
each, that difference is literally impossible to communicate. It
can be calculated and seen clearly only using a Bayesian evi-
dence metric.16

Misconception #8: P values are properly written as inequal-
ities (eg, “P ".02” when P ! .015). Expressing all P values as
inequalities is a confusion that comes from the combination
of hypothesis tests and P values. In a hypothesis test, a pre-set
“rejection” threshold is established. It is typically set at P !
.05, corresponding to a type I error rate (or “alpha”) of 5%. In
such a test, the only relevant information is whether the
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difference observed fell into the rejection region or not, for
example, whether or not P ".05. In that case, expressing the
result as an inequality (P ".05 v P ".05) makes sense. But we
are usually interested in how much evidence there is against
the null hypothesis; that is the reason P values are used. For
that purpose, it matters whether the P value equals .50, .06,
.04 or .00001. To convey the strength of evidence, the exact
P value should always be reported. If an inequality is used to
indicate merely whether the null hypothesis should be re-
jected or not, that can be done only with a pre-specified
threshold, like .05. The threshold cannot depend on the observed
P value, meaning we cannot report “P #.01” if we observe P !
.008 and the threshold was .05. No matter how low the P
value, we must report “P #.05.” But rejection is very rarely
the issue of sole interest. Many medical journals require that
very small P values (eg, #.001) be reported as inequalities as
a stylistic issue. This is ordinarily not a big problem except in
situations where literally thousands of statistical tests have
been done (as in genomic experiments) when many very
small P values can be generated by chance, and the distinc-
tion between the small and the extremely small P values are
important for proper conclusions.

Misconception #9: P ! .05 means that if you reject the null
hypothesis, the probability of a type I error is only 5%. Now we
are getting into logical quicksand. This statement is equiva-
lent to Misconception #1, although that can be hard to see
immediately. A type I error is a “false positive,” a conclusion
that there is a difference when no difference exists. If such a
conclusion represents an error, then by definition there is no
difference. So a 5% chance of a false rejection is equivalent to
saying that there is a 5% chance that the null hypothesis is
true, which is Misconception #1.

Another way to see that this is incorrect is to imagine that
we are examining a series of experiments on a therapy we are
certain is effective, such as insulin for diabetes. If we reject
the null hypothesis, the probability that rejection is false (a
type 1 error) is zero. Since all rejections of the null hypothesis
are true, it does not matter what the P value is. Conversely, if
we were testing a worthless therapy, say copper bracelets for
diabetes, all rejections would be false, regardless of the P
value. So the chance that a rejection is right or wrong clearly
depends on more than just the P value. Using the Bayesian
lexicon, it depends also on our a priori certitude (or the
strength of external evidence), which is quantified as the
“prior probability” of a hypothesis.

Misconception #10: With a P ! .05 threshold for signifi-
cance, the chance of a type I error will be 5%. What is different
about this statement from Misconception #9 is that here we
are looking at the chance of a type I error before the experi-
ment is done, not after rejection. However, as in the previous
case, the chance of a type I error depends on the prior prob-
ability that the null hypothesis is true. If it is true, then the
chance of a false rejection is indeed 5%. If we know the null
hypothesis is false, there is no chance of a type I error. If we
are unsure, the chance of a false positive lies between zero
and 5%.

The point above assumes no issues with multiplicity or
study design. However, in this new age of genomic medicine,

it is often the case that literally thousands of implicit hypoth-
eses can be addressed in a single analysis, as in comparing the
expression of 5,000 genes between diseased and non-dis-
eased subjects. If we define “type I error” as the probability
that any of thousands of possible predictors will be falsely
declared as “real,” then the P value on any particular predic-
tor has little connection with the type I error related to the
whole experiment. Here, the problem is not just with the P
value itself but with the disconnection between the P value
calculated for one predictor and a hypothesis encompassing
many possible predictors. Another way to frame the issue is
that the search through thousands of predictors implies a
very low prior probability for any one of them, making the
posterior probability for a single comparison extremely low
even with a low P value. Since the 1 $ (posterior probability)
is the probability of making an error when declaring that
relationship “real,” a quite low P value still carries with it a
high probability of false rejection.31,32

Misconception #11: You should use a one-sided P value
when you don’t care about a result in one direction, or a difference
in that direction is impossible. This is a surprisingly subtle and
complex issue that has received a fair amount of technical
discussion, and there are reasonable grounds for disagree-
ment.33-38 But the operational effect of using a one-sided P
value is to increase the apparent strength of evidence for a
result based on considerations not found in the data. Thus,
use of a one-sided P value means the P value will incorporate
attitudes, beliefs or preferences of the experimenter into the
assessment of the strength of evidence. If we are interested in
the P value as a measure of the strength of evidence, this does
not make sense. If we are interested in the probabilities of
making type I or type II errors, then considerations of one-
sided or two-sided rejection regions could make sense, but
there is no need to use P values in that context.

Misconception #12: A scientific conclusion or treatment pol-
icy should be based on whether or not the P value is significant.
This misconception encompasses all of the others. It is equiv-
alent to saying that the magnitude of effect is not relevant,
that only evidence relevant to a scientific conclusion is in the
experiment at hand, and that both beliefs and actions flow
directly from the statistical results. The evidence from a given
study needs to be combined with that from prior work to
generate a conclusion. In some instances, a scientifically de-
fensible conclusion might be that the null hypothesis is still
probably true even after a significant result, and in other
instances, a nonsignificant P value might still lead to a con-
clusion that a treatment works. This can be done formally
only through Bayesian approaches. To justify actions, we
must incorporate the seriousness of errors flowing from the
actions together with the chance that the conclusions are
wrong.

These misconceptions do not exhaust the range of mis-
statements about statistical measures, inference or even the P
value, but most of those not listed are derivative from the 12
described above. It is perhaps useful to understand how to
measure true evidential meaning, and look at the P value
from that perspective. There exists only one calculus for
quantitative inference—Bayes’ theorem—explicated in more
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depth elsewhere and in other articles in this issue. Bayes’
theorem can be written in words in this way:

Odds of the null hypothesis after obtaining the data

# Odds of the null hypothesis before obtaining the data

$ Bayes’ factor

or to use more technical terms:

Posterior odds (H0, given the data)

# Posterior odds (H0, given the data)

$
Prob(Data, under H0)

Prob(Data, under HA)

where Odds ! probability/(1 $ probability), H0 ! null hy-
pothesis, and HA ! alternative hypothesis.

It is illuminating that the P value does not appear any-
where in this equation. Instead, we have something called the
Bayes’ factor (also called the likelihood ratio in some set-
tings), which is basically the same as the likelihood ratio used
in diagnostic testing.24,39 It measures how strongly the ob-
served data are predicted by two competing hypotheses, and
is a measure of evidence that has most of the properties that
we normally mistakenly ascribe to the P value. Table 2 sum-
marizes desirable properties of an evidential measure, and
contrasts the likelihood ratio to the P value. The main point
here is that our intuition about what constitutes a good mea-
sure of evidence is correct; what is problematic is that the P
value has few of them. Interested readers are referred to more
comprehensive treatments of this contrast, which show,
among other things, that the P value greatly overstates the
evidence against the null hypothesis.40 (See article by Sander
Greenland in this issue for more complete discussion of
Bayesian approaches41). Table 3 shows how P values can be
compared to the strongest Bayes’ factors that can be mustered
for that degree of deviation from the null hypothesis. What
this table shows is that (1) P values overstate the evidence
against the null hypothesis, and (2) the chance that rejection
of the null hypothesis is mistaken is far higher than is gener-
ally appreciated even when the prior probability is 50%.

One of many reasons that P values persist is that they are
part of the vocabulary of research; whatever they do or do not
mean, the scientific community feels they understand the
rules with regard to their use, and are collectively not familiar

enough with alternative methodologies or metrics. This was
discovered by the editor of the journal Epidemiology who tried
to ban their use but was forced to abandon the effort after
several years.42

In the meantime, what is an enlightened and well-meaning
researcher to do? The most important foundational issue to
appreciate is that there is no number generated by standard
methods that tells us the probability that a given conclusion is
right or wrong. The determinants of the truth of a knowledge
claim lie in combination of evidence both within and outside
a given experiment, including the plausibility and evidential
support of the proposed underlying mechanism. If that
mechanism is unlikely, as with homeopathy or perhaps in-
tercessory prayer, a low P value is not going to make a treat-
ment based on that mechanism plausible. It is a very rare
single experiment that establishes proof. That recognition
alone prevents many of the worst uses and abuses of the P
value. The second principle is that the size of an effect mat-
ters, and that the entire confidence interval should be con-
sidered as an experiment’s result, more so than the P value or
even the effect estimate. The confidence interval incorporates
both the size and imprecision in effect estimated by the data.

There hopefully will come a time when Bayesian measures
of evidence, or at least Bayesian modes of thinking, will sup-
plant the current ones, but until then we can still use stan-
dard measures sensibly if we understand how to reinterpret
them through a Bayesian filter, and appreciate that our infer-
ences must rest on many more pillars of support than the
study at hand.
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